The unifying theory of scaling in thermal convection: the updated prefactors

Richard Johannes Antonius Maria Stevens, Erwin van der Poel, S. Grossmann, Detlef Lohse

Research output: Contribution to journalArticleAcademicpeer-review

215 Citations (Scopus)
2 Downloads (Pure)

Abstract

The unifying theory of scaling in thermal convection (Grossmann & Lohse, J. Fluid. Mech., vol. 407, 2000, pp. 27–56; henceforth the GL theory) suggests that there are no pure power laws for the Nusselt and Reynolds numbers as function of the Rayleigh and Prandtl numbers in the experimentally accessible parameter regime. In Grossmann & Lohse (Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319) the dimensionless parameters of the theory were fitted to 155 experimental data points by Ahlers & Xu (Phys. Rev. Lett., vol. 86, 2001, pp. 3320–3323) in the regime 3×107≤Ra≤3×109 and 4≤Pr≤34 and Grossmann & Lohse (Phys. Rev. E, vol. 66, 2002, p. 016305) used the experimental data point from Qiu & Tong (Phys. Rev. E, vol. 64, 2001, p. 036304) and the fact that Nu(Ra,Pr) is independent of the parameter a, which relates the dimensionless kinetic boundary thickness with the square root of the wind Reynolds number, to fix the Reynolds number dependence. Meanwhile the theory is, on the one hand, well-confirmed through various new experiments and numerical simulations; on the other hand, these new data points provide the basis for an updated fit in a much larger parameter space. Here we pick four well-established (and sufficiently distant) Nu(Ra,Pr) data points and show that the resulting Nu(Ra,Pr) function is in agreement with almost all established experimental and numerical data up to the ultimate regime of thermal convection, whose onset also follows from the theory. One extra Re(Ra,Pr) data point is used to fix Re(Ra,Pr). As Re can depend on the definition and the aspect ratio, the transformation properties of the GL equations are discussed in order to show how the GL coefficients can easily be adapted to new Reynolds number data while keeping Nu(Ra,Pr) unchanged
Original languageEnglish
Pages (from-to)295-308
Number of pages15
JournalJournal of fluid mechanics
Volume730
DOIs
Publication statusPublished - 2013

Keywords

  • IR-88397
  • METIS-297131

Fingerprint

Dive into the research topics of 'The unifying theory of scaling in thermal convection: the updated prefactors'. Together they form a unique fingerprint.

Cite this