Theoretical analysis of highly linear tunable filters using Switched-Resistor techniques

Amorn Jiraseree-amornkun, A. Jiraseree-Amornkun, Apisak Worapishet, Eric A.M. Klumperink, Bram Nauta, Wanlop Surakampontorn

    Research output: Contribution to journalArticleAcademicpeer-review

    11 Citations (Scopus)
    133 Downloads (Pure)


    Abstract—In this paper, an in-depth analysis of switched-resistor (S-R) techniques for implementing low-voltage low-distortion tunable active-RC filters is presented. The S-R techniques make use of switch(es) with duty-cycle-controlled clock(s) to achieve tunability of the effective resistance and, hence, the RC time constant. The characteristics of two S-R networks utilizing one set (S-1R) and two sets (S-2R) of switch and resistor combinations are analyzed. It will be shown that the S-2R network outperforms the S-1R counterpart in terms of finite-slew-rate-induced distortion, frequency translation, and noise performance. In order to extend the tuning range, an S-R bank scheme is also described. The theoretical analysis was verified by an experiment on a 100-kHz first-order S-R filter prototype, implemented using discrete elements, where several advantages of the S-2R over the S-1R networks are demonstrated. Simulations of 10-MHz low-pass filters based on the S-1R and S-2R techniques in a standard 0.18- mCMOSprocess are also included for performance comparison in practical on-chip filter implementations.
    Original languageEnglish
    Pages (from-to)3641-3654
    Number of pages14
    JournalIEEE transactions on circuits and systems I: regular papers
    Issue number2/11
    Publication statusPublished - 1 Dec 2008


    • METIS-254880
    • EWI-13059
    • IR-64877


    Dive into the research topics of 'Theoretical analysis of highly linear tunable filters using Switched-Resistor techniques'. Together they form a unique fingerprint.

    Cite this