Thermal-solutal-induced bistability of evaporating multicomponent liquid thin films

Yuki Wakata, Feng Wang, Chao Sun*, Detlef Lohse

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Downloads (Pure)

Abstract

Volatile multicomponent liquid films show rich dynamics, due to the complex interplay of gradients in temperature and in solute concentrations. Here, we study the evaporation dynamics of a tricomponent liquid film, consisting of water, ethanol, and trans-anethole oil (known as "ouzo"). With the preferential evaporation of ethanol, cellular convective structures are observed both in the thermal patterns and in the nucleated oil droplet patterns. However, the feature sizes of these two patterns can differ, indicating dual instability mechanisms dominated by either temperature or solute concentration. Using numerical simulations, we quantitatively compare the contributions of temperature and solute concentration on the surface tension. Our results reveal that the thermal Marangoni effect predominates at the initial evaporation stage, resulting in cellular patterns in thermal images, while the solutal Marangoni effect gradually becomes dominant. By regulating the transition time of this thermal-solutal-induced bistability and the nucleation time of oil microdroplets in the ternary mixture, the oil droplet patterns can be well controlled. This capability not only enhances our understanding of the evaporation dynamics but also paves the way for precise manipulation of nucleation and deposition processes at larger scales.

Original languageEnglish
Article numbere2418487122
Pages (from-to)e2418487122
JournalProceedings of the National Academy of Sciences of the United States of America
Volume122
Issue number6
DOIs
Publication statusPublished - 11 Feb 2025

Keywords

  • Bénard–Marangoni convection
  • evaporating liquid film
  • Marangoni effect
  • multicomponent liquid

Fingerprint

Dive into the research topics of 'Thermal-solutal-induced bistability of evaporating multicomponent liquid thin films'. Together they form a unique fingerprint.

Cite this