Abstract
An interfacial polymerization process is introduced for the fabrication of thermally stable cyclomatrix poly(phenoxy)phosphazenes thin-film composite membranes that can sieve hydrogen from hot gas mixtures. By replacing the conventionally used aqueous phase with dimethyl sulfoxide/potassium hydroxide, a variety of biphenol molecules are deprotonated to aryloxide anions that react with hexachlorocyclotriphosphazene dissolved in cyclohexane to form a thin film of a highly cross-linked polymer film. The film membranes have persistent permselectivities for hydrogen over nitrogen (16–27) and methane (14–30) while maintaining hydrogen permeances in the order of (10−8–10−7 mol m−2s−1Pa−1) at temperatures as high as 260 °C and do not lose their performance after exposure to 450 °C. The unprecedented thermal stability of these polymer membranes opens the potential for industrial membrane gas separations at elevated temperatures.
Original language | English |
---|---|
Article number | 2202077 |
Journal | Advanced materials interfaces |
Volume | 10 |
Issue number | 4 |
DOIs | |
Publication status | Published - 3 Feb 2023 |
Keywords
- Gas separation
- High temperature
- Interfacial polymerization
- Membranes
- Polyphosphazenes