Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes

R. Tao, W.B. Wang, J.K. Luo, S. Ahmad Hasan, H. Torun, P. Canyelles-Pericas, J. Zhou, W.P. Xuan, M.D. Cooke, D. Gibson, Q. Wu, W.P. Ng, J.K. Luo, Y.Q. Fu

Research output: Contribution to journalArticleAcademicpeer-review

35 Citations (Scopus)

Abstract

Based on theoretical analysis, finite element simulation and experimental verifications, we have systematically investigated evolution, hybridization and decoupling of multiple acoustic wave modes and vibration patterns generated from piezoelectric film acoustic wave devices fabricated on flexible thin foils/plates. ZnO piezoelectric films deposited on flexible and bendable Al foil and plates were selected for this particular study. The ZnO/Al acoustic wave devices were chosen with wavelengths varied from 12 to 800 μm, ZnO film thickness from 2 to 10 μm and Al foil/plate thickness from 10 to 600 μm. Multiple acoustic wave modes (including symmetrical and asymmetrical Lamb waves, Rayleigh waves and higher harmonic/Sezawa wave modes) were generated, hybridized occasionally with each other, and then easily decoupled by changing the ratios of the substrate/film thicknesses to wavelengths. Ratios between device wavelength and substrate/film thickness have been identified to be the dominant parameter in determining the evolution and hybridization of multiple wave modes and their vibration patterns, which provide useful design guidance for both sensing and microfluidic applications using these flexible and bendable acoustic wave devices.

Original languageEnglish
Pages (from-to)587-594
Number of pages8
JournalSurface and coatings technology
Volume357
DOIs
Publication statusPublished - 15 Jan 2019
Externally publishedYes

Keywords

  • Acoustic waves
  • Flexible devices ZnO
  • Lamb wave
  • Surface acoustic wave
  • Thin films
  • n/a OA procedure

Fingerprint

Dive into the research topics of 'Thin film flexible/bendable acoustic wave devices: Evolution, hybridization and decoupling of multiple acoustic wave modes'. Together they form a unique fingerprint.

Cite this