Time- and memory-efficient representation of complex mesoscale potentials

Grigory Drozdov, Igor Ostanin*, Ivan Oseledets

*Corresponding author for this work

Research output: Contribution to journalArticleAcademicpeer-review

3 Citations (Scopus)

Abstract

We apply the modern technique of approximation of multivariate functions – tensor train cross approximation – to the problem of the description of physical interactions between complex-shaped bodies in a context of computational nanomechanics. In this note we showcase one particular example – van der Waals interactions between two cylindrical bodies – relevant to modeling of carbon nanotube systems. The potential is viewed as a tensor (multidimensional table) which is represented in compact form with the help of tensor train decomposition. The described approach offers a universal solution for the description of van der Waals interactions between complex-shaped nanostructures and can be used within the framework of such systems of mesoscale modeling as recently emerged mesoscopic distinct element method (MDEM).

Original languageEnglish
Pages (from-to)110-114
Number of pages5
JournalJournal of computational physics
Volume343
DOIs
Publication statusPublished - 15 Aug 2017
Externally publishedYes

Keywords

  • Mesoscale modeling
  • Tensor train cross approximation
  • n/a OA procedure

Fingerprint

Dive into the research topics of 'Time- and memory-efficient representation of complex mesoscale potentials'. Together they form a unique fingerprint.

Cite this