TY - JOUR
T1 - Time-resolved absolute radius estimation of vibrating contrast microbubbles using an acoustical camera
AU - Spiekhout, Sander
AU - Voorneveld, Jason
AU - Elburg, Benjamin van
AU - Renaud, Guillaume
AU - Segers, Tim
AU - Lajoinie, Guillaume P. R.
AU - Versluis, Michel
AU - Verweij, Martin D.
AU - Jong, Nico de
AU - Bosch, Johannes G.
N1 - Funding Information:
This publication is part of the project Bubble-X of the research program Ultra-X-Treme (P17-32), which is financed by the Dutch Research Council (NWO). We would like to thank Robert Beurskens for advice and technical assistance and Paul van Neer for his helpful comments regarding phase transfer characterization.
Publisher Copyright:
© 2022 Author(s).
PY - 2022/6
Y1 - 2022/6
N2 - Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 μm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an “acoustical camera” (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1–2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). “An ‘acoustical camera’ for in vitro characterization of contrast agent microbubble vibrations,” Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations (푅0=R0= 2.1 and 3.5 μm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this “extended AC” can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.
AB - Ultrasound (US) contrast agents consist of microbubbles ranging from 1 to 10 μm in size. The acoustical response of individual microbubbles can be studied with high-frame-rate optics or an “acoustical camera” (AC). The AC measures the relative microbubble oscillation while the optical camera measures the absolute oscillation. In this article, the capabilities of the AC are extended to measure the absolute oscillations. In the AC setup, microbubbles are insonified with a high- (25 MHz) and low-frequency US wave (1–2.5 MHz). Other than the amplitude modulation (AM) from the relative size change of the microbubble (employed in Renaud, Bosch, van der Steen, and de Jong (2012a). “An ‘acoustical camera’ for in vitro characterization of contrast agent microbubble vibrations,” Appl. Phys. Lett. 100(10), 101911, the high-frequency response from individual vibrating microbubbles contains a phase modulation (PM) from the microbubble wall displacement, which is the extension described here. The ratio of PM and AM is used to determine the absolute radius, R0. To test this sizing, the size distributions of two monodisperse microbubble populations (푅0=R0= 2.1 and 3.5 μm) acquired with the AC were matched to the distribution acquired with a Coulter counter. As a result of measuring the absolute size of the microbubbles, this “extended AC” can capture the full radial dynamics of single freely floating microbubbles with a throughput of hundreds of microbubbles per hour.
KW - 22/2 OA procedure
UR - https://doi.org/10.1121/10.0011619
U2 - 10.1121/10.0011619
DO - 10.1121/10.0011619
M3 - Article
VL - 151
SP - 3993
EP - 4003
JO - Journal of the Acoustical Society of America
JF - Journal of the Acoustical Society of America
SN - 0001-4966
IS - 6
M1 - 3993
ER -