Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States during Human-Exoskeleton Locomotion Tasks

    Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

    1 Citation (Scopus)
    1 Downloads (Pure)

    Abstract

    The ability to efficiently assist human movement via wearable robotic exoskeletons requires a deep understanding of human-exoskeleton physical interaction. That is, how the exoskeleton affects human movement and how the human body reacts to robotic assistance. In this context, it is central to gain access to human neuromuscular states, i.e. Neural activation to muscle, muscle fibers short-stretch cycle, tendon strain, musculotendon viscoelasticity. This would enable the personalized design of assistive devices and human-exoskeleton interfaces with respect to a specific subject's anatomy and force-generating capacity. Here we present a real-time electromyography-driven framework interfaced to a robotic bilateral ankle exoskeleton. This framework provides real-time information about joint and underlying muscle mechanics. We provide a quantitative evaluation of the real-time framework across a repertoire of human-exoskeleton locomotion tasks. We also show how this enables understanding how robotic exoskeletons in parallel to human limbs contribute to alter normative musculoskeletal mechanics. This will open new avenues for the creation of symbiotic exoskeleton technologies that operate as an extension of the own body.

    Original languageEnglish
    Title of host publication 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
    PublisherIEEE Computer Society
    Pages683-688
    Number of pages6
    ISBN (Electronic)978-1-5386-8183-1
    ISBN (Print)978-1-5386-8184-8
    DOIs
    Publication statusPublished - 9 Oct 2018
    Event7th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2018
    : High Tech Human Touch
    - University Campus, Enschede, Netherlands
    Duration: 26 Aug 201829 Aug 2018
    Conference number: 7
    https://www.biorob2018.org/

    Conference

    Conference7th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2018
    Abbreviated titleBioRob
    CountryNetherlands
    CityEnschede
    Period26/08/1829/08/18
    Internet address

    Fingerprint Dive into the research topics of 'Toward Muscle-Driven Control of Wearable Robots: A Real-Time Framework for the Estimation of Neuromuscular States during Human-Exoskeleton Locomotion Tasks'. Together they form a unique fingerprint.

    Cite this