Abstract
Flow-sensor arrays uncover the potential to measure spatio-temporal flow patterns rather than flow measurements at just a single point. We present in this paper the developments in design, fabrication and interfacing of biomimetic flow-sensor arrays, inspired by flow-sensitive organs (cerci) of crickets. For the purpose of high-resolution flow field visualization by our artificial hair flow-sensor arrays, various array-interfacing schemes are discussed and compared. Frequency division multiplexing (FDM) is shown to be an attractive method for efficient interrogation of capacitive array sensors. Using silicon-on-insulator technology with deep trench isolation structures, hair-based flow-sensors with differential capacitive read-out, arranged in single-chip arrays, have been successfully fabricated. FDM is implemented and used to interrogate individual hair sensors providing simultaneous real-time flow measurements from multiple hairs. This powerful approach is demonstrated by reconstruction of the field of a harmonic dipole field at the position of the hairs and by localizing this dipole source relative to the array elements.
Original language | Undefined |
---|---|
Pages (from-to) | 046009 |
Number of pages | 12 |
Journal | Bioinspiration & biomimetics |
Volume | 7 |
Issue number | 4 |
DOIs | |
Publication status | Published - 2012 |
Event | 24th IEEE International Conference on Micro Electro Mechanical Systems, MEMS 2011 - Cancun, Mexico Duration: 23 Jan 2011 → 27 Jan 2011 Conference number: 24 |
Keywords
- EWI-19702
- IR-81502
- METIS-296034
- TST-Life like