Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

1 Citation (Scopus)
88 Downloads (Pure)

Abstract

Often disasters cause structural damages and produce rubble and debris, depending on their magnitude and type. The initial disaster response activity is evaluation of the damages, i.e. creation of a detailed damage estimation for different object types throughout the affected area. First responders and government stakeholders require the damage information to plan rescue operations and later on to guide the recovery process. Remote sensing, due to its agile data acquisition capability, synoptic coverage and low cost, has long been used as a vital tool to collect information after a disaster and conduct damage assessment. To detect damages from remote sensing imagery (both UAV and satellite images) structural rubble/debris has been employed as a proxy to detect damaged buildings/areas. However, disaster debris often includes vegetation, sediments and relocated personal property in addition to structural rubble, i.e. items that are wind- or waterborne and not necessarily associated with the closest building. Traditionally, land cover classification-based damage detection has been categorizing debris as damaged areas. However, in particular in waterborne disaster such as tsunamis or storm surges, vast areas end up being debris covered, effectively hindering actual building damage to be detected, and leading to an overestimation of damaged area. Therefore, to perform a precise damage assessment, and consequently recovery assessment that relies on a clear damage benchmark, it is crucial to separate actual structural rubble from ephemeral debris. In this study two approaches were investigated for two types of data (i.e., UAV images, and multi-temporal satellite images). To do so, three textural analysis, i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG), were implemented on mosaic UAV images, and the relation between debris type and their time of removal was investigated using very high-resolution satellite images. The results showed that the HOG features, among other texture features, have the potential to be used for debris identification. In addition, multi-temporal satellite image analysis showed that debris removal time needs to be investigated using daily images, because the removal time of debris may change based on the type of disaster and its location.
Original languageEnglish
Title of host publicationThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
EditorsG. Vosselman, S.J. Oude Elberink, M.Y. Yang
Place of PublicationEnschede
PublisherInternational Society for Photogrammetry and Remote Sensing (ISPRS)
Pages297-302
Number of pages6
VolumeXLII-2/W13
DOIs
Publication statusPublished - 4 Jun 2019
Event4th ISPRS Geospatial Week 2019 - University of Twente, Enschede, Netherlands
Duration: 10 Jun 201914 Jun 2019
Conference number: 4
https://www.gsw2019.org/

Publication series

NameInternational Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
PublisherCopernicus
ISSN (Print)1682-1750

Conference

Conference4th ISPRS Geospatial Week 2019
CountryNetherlands
CityEnschede
Period10/06/1914/06/19
Internet address

Fingerprint

disaster
damage
histogram
remote sensing
satellite image
storm surge
tsunami
image analysis
data acquisition
land cover
stakeholder
imagery
texture
filter
vegetation
cost
sediment
removal

Keywords

  • ITC-GOLD

Cite this

Ghaffarian, S., & Kerle, N. (2019). Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images. In G. Vosselman, S. J. Oude Elberink, & M. Y. Yang (Eds.), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences (Vol. XLII-2/W13, pp. 297-302). (International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives). Enschede: International Society for Photogrammetry and Remote Sensing (ISPRS). https://doi.org/10.5194/isprs-archives-XLII-2-W13-297-2019
Ghaffarian, S. ; Kerle, N. / Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. editor / G. Vosselman ; S.J. Oude Elberink ; M.Y. Yang. Vol. XLII-2/W13 Enschede : International Society for Photogrammetry and Remote Sensing (ISPRS), 2019. pp. 297-302 (International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives).
@inproceedings{6c1be97de985481f80ac8859f361ffc6,
title = "Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images",
abstract = "Often disasters cause structural damages and produce rubble and debris, depending on their magnitude and type. The initial disaster response activity is evaluation of the damages, i.e. creation of a detailed damage estimation for different object types throughout the affected area. First responders and government stakeholders require the damage information to plan rescue operations and later on to guide the recovery process. Remote sensing, due to its agile data acquisition capability, synoptic coverage and low cost, has long been used as a vital tool to collect information after a disaster and conduct damage assessment. To detect damages from remote sensing imagery (both UAV and satellite images) structural rubble/debris has been employed as a proxy to detect damaged buildings/areas. However, disaster debris often includes vegetation, sediments and relocated personal property in addition to structural rubble, i.e. items that are wind- or waterborne and not necessarily associated with the closest building. Traditionally, land cover classification-based damage detection has been categorizing debris as damaged areas. However, in particular in waterborne disaster such as tsunamis or storm surges, vast areas end up being debris covered, effectively hindering actual building damage to be detected, and leading to an overestimation of damaged area. Therefore, to perform a precise damage assessment, and consequently recovery assessment that relies on a clear damage benchmark, it is crucial to separate actual structural rubble from ephemeral debris. In this study two approaches were investigated for two types of data (i.e., UAV images, and multi-temporal satellite images). To do so, three textural analysis, i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG), were implemented on mosaic UAV images, and the relation between debris type and their time of removal was investigated using very high-resolution satellite images. The results showed that the HOG features, among other texture features, have the potential to be used for debris identification. In addition, multi-temporal satellite image analysis showed that debris removal time needs to be investigated using daily images, because the removal time of debris may change based on the type of disaster and its location.",
keywords = "ITC-GOLD",
author = "S. Ghaffarian and N. Kerle",
year = "2019",
month = "6",
day = "4",
doi = "10.5194/isprs-archives-XLII-2-W13-297-2019",
language = "English",
volume = "XLII-2/W13",
series = "International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives",
publisher = "International Society for Photogrammetry and Remote Sensing (ISPRS)",
pages = "297--302",
editor = "G. Vosselman and {Oude Elberink}, S.J. and M.Y. Yang",
booktitle = "The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences",

}

Ghaffarian, S & Kerle, N 2019, Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images. in G Vosselman, SJ Oude Elberink & MY Yang (eds), The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. vol. XLII-2/W13, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, International Society for Photogrammetry and Remote Sensing (ISPRS), Enschede, pp. 297-302, 4th ISPRS Geospatial Week 2019, Enschede, Netherlands, 10/06/19. https://doi.org/10.5194/isprs-archives-XLII-2-W13-297-2019

Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images. / Ghaffarian, S.; Kerle, N.

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. ed. / G. Vosselman; S.J. Oude Elberink; M.Y. Yang. Vol. XLII-2/W13 Enschede : International Society for Photogrammetry and Remote Sensing (ISPRS), 2019. p. 297-302 (International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives).

Research output: Chapter in Book/Report/Conference proceedingConference contributionAcademicpeer-review

TY - GEN

T1 - Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images

AU - Ghaffarian, S.

AU - Kerle, N.

PY - 2019/6/4

Y1 - 2019/6/4

N2 - Often disasters cause structural damages and produce rubble and debris, depending on their magnitude and type. The initial disaster response activity is evaluation of the damages, i.e. creation of a detailed damage estimation for different object types throughout the affected area. First responders and government stakeholders require the damage information to plan rescue operations and later on to guide the recovery process. Remote sensing, due to its agile data acquisition capability, synoptic coverage and low cost, has long been used as a vital tool to collect information after a disaster and conduct damage assessment. To detect damages from remote sensing imagery (both UAV and satellite images) structural rubble/debris has been employed as a proxy to detect damaged buildings/areas. However, disaster debris often includes vegetation, sediments and relocated personal property in addition to structural rubble, i.e. items that are wind- or waterborne and not necessarily associated with the closest building. Traditionally, land cover classification-based damage detection has been categorizing debris as damaged areas. However, in particular in waterborne disaster such as tsunamis or storm surges, vast areas end up being debris covered, effectively hindering actual building damage to be detected, and leading to an overestimation of damaged area. Therefore, to perform a precise damage assessment, and consequently recovery assessment that relies on a clear damage benchmark, it is crucial to separate actual structural rubble from ephemeral debris. In this study two approaches were investigated for two types of data (i.e., UAV images, and multi-temporal satellite images). To do so, three textural analysis, i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG), were implemented on mosaic UAV images, and the relation between debris type and their time of removal was investigated using very high-resolution satellite images. The results showed that the HOG features, among other texture features, have the potential to be used for debris identification. In addition, multi-temporal satellite image analysis showed that debris removal time needs to be investigated using daily images, because the removal time of debris may change based on the type of disaster and its location.

AB - Often disasters cause structural damages and produce rubble and debris, depending on their magnitude and type. The initial disaster response activity is evaluation of the damages, i.e. creation of a detailed damage estimation for different object types throughout the affected area. First responders and government stakeholders require the damage information to plan rescue operations and later on to guide the recovery process. Remote sensing, due to its agile data acquisition capability, synoptic coverage and low cost, has long been used as a vital tool to collect information after a disaster and conduct damage assessment. To detect damages from remote sensing imagery (both UAV and satellite images) structural rubble/debris has been employed as a proxy to detect damaged buildings/areas. However, disaster debris often includes vegetation, sediments and relocated personal property in addition to structural rubble, i.e. items that are wind- or waterborne and not necessarily associated with the closest building. Traditionally, land cover classification-based damage detection has been categorizing debris as damaged areas. However, in particular in waterborne disaster such as tsunamis or storm surges, vast areas end up being debris covered, effectively hindering actual building damage to be detected, and leading to an overestimation of damaged area. Therefore, to perform a precise damage assessment, and consequently recovery assessment that relies on a clear damage benchmark, it is crucial to separate actual structural rubble from ephemeral debris. In this study two approaches were investigated for two types of data (i.e., UAV images, and multi-temporal satellite images). To do so, three textural analysis, i.e., Gabor filters, Local Binary Pattern (LBP), and Histogram of the Oriented Gradients (HOG), were implemented on mosaic UAV images, and the relation between debris type and their time of removal was investigated using very high-resolution satellite images. The results showed that the HOG features, among other texture features, have the potential to be used for debris identification. In addition, multi-temporal satellite image analysis showed that debris removal time needs to be investigated using daily images, because the removal time of debris may change based on the type of disaster and its location.

KW - ITC-GOLD

UR - https://ezproxy2.utwente.nl/login?url=https://library.itc.utwente.nl/login/2019/chap/ghaffarian_tow.pdf

U2 - 10.5194/isprs-archives-XLII-2-W13-297-2019

DO - 10.5194/isprs-archives-XLII-2-W13-297-2019

M3 - Conference contribution

VL - XLII-2/W13

T3 - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives

SP - 297

EP - 302

BT - The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences

A2 - Vosselman, G.

A2 - Oude Elberink, S.J.

A2 - Yang, M.Y.

PB - International Society for Photogrammetry and Remote Sensing (ISPRS)

CY - Enschede

ER -

Ghaffarian S, Kerle N. Towards post-disaster debris identification for precise damage and recovery assessments from uav and satellite images. In Vosselman G, Oude Elberink SJ, Yang MY, editors, The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XLII-2/W13. Enschede: International Society for Photogrammetry and Remote Sensing (ISPRS). 2019. p. 297-302. (International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives). https://doi.org/10.5194/isprs-archives-XLII-2-W13-297-2019