Tracking pattern learning with single-trial event related potentials

M.A. Jongsma, T. Eichele, C.M. van Rijn, A.M.L. Coenen, K. Hugdahl, H. Nordby, R. Quian Quiroga

    Research output: Contribution to conferencePaper

    46 Citations (Scopus)


    The main aim was to track the dynamics of pattern-learning using single-trial event-related potentials (ERPs). A new 'learning-oddball' paradigm was employed presenting eight random targets (the 'no-pattern') followed by eight regular targets (the 'pattern'). In total, six repetitions of the 'no-pattern' followed by the 'pattern' were presented. We traced the dynamics of learning by measuring responses to 16 (eight random-eight regular) targets. Since this alternation of the 'no-pattern' followed by the 'pattern' was repeated six times, we extracted single-trial responses to all 96 targets to determine if learning occurred more rapidly with each repetition of the 'pattern.' Following random targets, ERPs contained a marked P3-N2 component that decreased to regular targets, whereas a contingent negative variation (CNV) appeared. ERP changes could be best described by sigmoid 'learning' curves. Single-trial analyses showed that learning occurred more rapidly over repetitions and suggested that the CNV developed prior to the decay of the N2-P3 component. We show a new paradigm-analysis methodology to track learning processes directly from brain signals. Single-trial ERPs analyses open a wide range of applications. Tracking the dynamic structure of cognitive functions may prove crucial in the understanding of learning and in the study of different pathologies.
    Original languageEnglish
    Publication statusPublished - 6 Jun 2006
    Event5th Dutch Endo-Neuro-Psycho Meeting 2006 - Golden Tulip Hotel Doorwerth, Doorwerth, Netherlands
    Duration: 6 Jun 20069 Jun 2006
    Conference number: 5


    Conference5th Dutch Endo-Neuro-Psycho Meeting 2006
    Internet address


    • METIS-238399


    Dive into the research topics of 'Tracking pattern learning with single-trial event related potentials'. Together they form a unique fingerprint.

    Cite this