Translation correlations in anisotropically scattering media

Benjamin Judkewitz, Roarke Horstmeyer, Ivo Micha Vellekoop, Ioannis N. Papadopoulos, Changhuei Yang

Research output: Contribution to journalArticleAcademicpeer-review

89 Citations (Scopus)

Abstract

Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.
Original languageUndefined
Pages (from-to)684-689
Number of pages6
JournalNature physics
Volume11
DOIs
Publication statusPublished - 2015

Keywords

  • IR-99785
  • METIS-311805

Cite this

Judkewitz, B., Horstmeyer, R., Vellekoop, I. M., Papadopoulos, I. N., & Yang, C. (2015). Translation correlations in anisotropically scattering media. Nature physics, 11, 684-689. https://doi.org/10.1038/nphys3373