TY - JOUR
T1 - Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffolds
AU - Güney, Aysun
AU - Malda, Jos
AU - Dhert, Wouter J.A.
AU - Grijpma, Dirk W.
PY - 2017
Y1 - 2017
N2 - Background: Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C). Methods: PCL-b-PTMC-b-PCL triblock copolymers were synthesized by sequential ring opening polymerization (ROP) of TMC and ε-CL. From these materials, films were prepared by solvent casting and porous structures were prepared by extrusion-based 3D printing. Results: Films prepared from a polymer with a relatively high molecular weight of 62 kg/mol had a melting temperature of 58°C and showed tough and resilient behavior, with values of the elastic modulus, tensile strength and elongation at break of approximately 120 MPa, 16 MPa and 620%, respectively. Porous structures were prepared by 3D printing. Ethylene carbonate was used as a crystalizable and water-extractable solvent to prepare structures with microporous strands. Solutions, containing 25 wt% of the triblock copolymer, were extruded at 50°C then cooled at different temperatures. Slow cooling at room temperature resulted in pores with widths of 18 ± 6 μm and lengths of 221 ± 77 μm, rapid cooling with dry ice resulted in pores with widths of 13 ± 3 μm and lengths of 58 ± 12 μm. These PCL-b-PTMC-b-PCL triblock copolymers processed into porous structures at relatively low temperatures may find wide application as designed degradable tissue engineering scaffolds. Conclusions: In this preliminary study we prepared biodegradable triblock copolymers based on 1,3-trimethylene carbonate and ε-caprolactone and assessed their physical characteristics. Furthermore, we evaluated their potential as melt-processable thermoplastic elastomeric biomaterials in 3D printing of tissue engineering scaffolds.
AB - Background: Biodegradable PCL-b-PTMC-b-PCL triblock copolymers based on trimethylene carbonate (TMC) and ε-caprolactone (CL) were prepared and used in the 3D printing of tissue engineering scaffolds. Triblock copolymers of various molecular weights containing equal amounts of TMC and CL were prepared. These block copolymers combine the low glass transition temperature of amorphous PTMC (approximately -20°C) and the semi-crystallinity of PCL (glass transition approximately -60°C and melting temperature approximately 60°C). Methods: PCL-b-PTMC-b-PCL triblock copolymers were synthesized by sequential ring opening polymerization (ROP) of TMC and ε-CL. From these materials, films were prepared by solvent casting and porous structures were prepared by extrusion-based 3D printing. Results: Films prepared from a polymer with a relatively high molecular weight of 62 kg/mol had a melting temperature of 58°C and showed tough and resilient behavior, with values of the elastic modulus, tensile strength and elongation at break of approximately 120 MPa, 16 MPa and 620%, respectively. Porous structures were prepared by 3D printing. Ethylene carbonate was used as a crystalizable and water-extractable solvent to prepare structures with microporous strands. Solutions, containing 25 wt% of the triblock copolymer, were extruded at 50°C then cooled at different temperatures. Slow cooling at room temperature resulted in pores with widths of 18 ± 6 μm and lengths of 221 ± 77 μm, rapid cooling with dry ice resulted in pores with widths of 13 ± 3 μm and lengths of 58 ± 12 μm. These PCL-b-PTMC-b-PCL triblock copolymers processed into porous structures at relatively low temperatures may find wide application as designed degradable tissue engineering scaffolds. Conclusions: In this preliminary study we prepared biodegradable triblock copolymers based on 1,3-trimethylene carbonate and ε-caprolactone and assessed their physical characteristics. Furthermore, we evaluated their potential as melt-processable thermoplastic elastomeric biomaterials in 3D printing of tissue engineering scaffolds.
KW - 3D printing
KW - Degradable thermoplastic elastomers
KW - Poly(trimethylene carbonate)
KW - Poly(ε-caprolactone)
KW - Tissue engineering
KW - Triblock copolymers
KW - 2023 OA procedure
UR - http://www.scopus.com/inward/record.url?scp=85018902046&partnerID=8YFLogxK
U2 - 10.5301/ijao.5000543
DO - 10.5301/ijao.5000543
M3 - Article
C2 - 28165584
AN - SCOPUS:85018902046
SN - 0391-3988
VL - 40
SP - 176
EP - 184
JO - The International journal of artificial organs
JF - The International journal of artificial organs
IS - 4
ER -