Trimethylene carbonate and e-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation

Erhan Bat, Josée A. Plantinga, Martin C. Harmsen, Marja J.A. van Luyn, Zheng Zhang, Dirk W. Grijpma, Jan Feijen

Research output: Contribution to journalArticleAcademicpeer-review

61 Citations (Scopus)
3 Downloads (Pure)


High molecular weight trimethylene carbonate (TMC) and -caprolactone (CL) (co)polymers were synthesized. Melt pressed (co)polymer films were cross-linked by gamma irradiation (25 kGy or 50 kGy) in vacuum, yielding gel fractions of up to 70%. The effects of copolymer composition and irradiation dose on the cytotoxicity, surface properties, degradation behavior, and mechanical and thermal properties of these (co)polymers and networks were investigated. Upon incubation with cell culture medium containing extracts of (co)polymers and networks, human foreskin fibroblasts remained viable. For all (co)polymers and networks, cell viabilities were determined to be higher than 94%. The formed networks were flexible, with elastic moduli ranging from 2.7 to 5.8 MPa. Moreover, these form-stable networks were creep resistant under dynamic conditions. The permanent deformation after 2 h relaxation was as low as 1% after elongating to 50% strain for 20 times. The in vitro enzymatic erosion behavior of these hydrophobic (co)polymers and networks was investigated using aqueous lipase solutions. The erosion rates in lipase solution could be tuned linearly from 0.8 to 45 mg/(cm2 × day) by varying the TMC to CL ratio and the irradiation dose. The copolymers and networks degraded essentially by a surface erosion mechanism.
Original languageEnglish
Pages (from-to)3208-3215
Issue number11
Publication statusPublished - 2008


  • METIS-254015
  • IR-68966


Dive into the research topics of 'Trimethylene carbonate and e-caprolactone based (co)polymer networks: mechanical properties and enzymatic degradation'. Together they form a unique fingerprint.

Cite this