Tumor targeting via EPR: Strategies to enhance patient responses

Susanne K. Golombek, Jan Niklas May, Benjamin Theek, Lia Appold, Natascha Drude, Fabian Kiessling, Twan Lammers*

*Corresponding author for this work

Research output: Contribution to journalReview articleAcademicpeer-review

453 Citations (Scopus)
20 Downloads (Pure)

Abstract

The tumor accumulation of nanomedicines relies on the enhanced permeability and retention (EPR) effect. In the last 5–10 years, it has been increasingly recognized that there is a large inter- and intra-individual heterogeneity in EPR-mediated tumor targeting, explaining the heterogeneous outcomes of clinical trials in which nanomedicine formulations have been evaluated. To address this heterogeneity, as in other areas of oncology drug development, we have to move away from a one-size-fits-all tumor targeting approach, towards methods that can be employed to individualize and improve nanomedicine treatments. To this end, efforts have to be invested in better understanding the nature, the complexity and the heterogeneity of the EPR effect, and in establishing systems and strategies to enhance, combine, bypass and image EPR-based tumor targeting. In the present manuscript, we summarize key studies in which these strategies are explored, and we discuss how these approaches can be employed to enhance patient responses.

Original languageEnglish
Pages (from-to)17-38
Number of pages22
JournalAdvanced drug delivery reviews
Volume130
DOIs
Publication statusPublished - May 2018

Keywords

  • Cancer
  • Drug delivery
  • EPR
  • Nanomedicine
  • Tumor targeting

Fingerprint

Dive into the research topics of 'Tumor targeting via EPR: Strategies to enhance patient responses'. Together they form a unique fingerprint.

Cite this