TY - JOUR
T1 - Tuning Excitation Field Frequency for Magnetic Particle Sensing using Superparamagnetic Quantifier
AU - Horstman - van de Loosdrecht, Melissa Mathilde
AU - Kahmann, Tamara
AU - Ludwig, Frank
AU - Alic, Lejla
PY - 2022/8/1
Y1 - 2022/8/1
N2 - Nonlinear handheld detection of magnetic nanoparticles is used to assess the lymph node status of cancer patients. Joint sensitivity and resolving power of nonlinear handheld detection can be maximized by optimizing the frequency of the excitation field, which is strongly influenced by Brownian and Néel relaxation. The characteristic frequency of magnetic nanoparticles that defines sensitivity and resolving power is usually assessed by AC susceptometry. In this study, we used SPaQ data to predict handheld detection performance for magnetic nanoparticles with various particle sizes. SPaQ assesses dynamics by measuring the derivative of the magnetization originating from magnetic nanoparticles activated by an alternating excitation field. The ratio between the maximum signal difference and full-width-at-half-maximumis used to estimate the optimal excitation frequency. Thereupon, it was shown that a particle with a combination of Brownian and Néel relaxation is superior in nonlinear handheld detection compared to Brownian or Néel only particles. Moreover, the optimal excitation frequency is generally established at a slightly higher frequency compared to the characteristic frequency assessed by AC susceptometry. Consequently, this insight into the consequences of the dynamic behavior of magnetic nanoparticles under an alternating magnetic field enables the optimization of nonlinear handheld detection for specific clinical applications.
AB - Nonlinear handheld detection of magnetic nanoparticles is used to assess the lymph node status of cancer patients. Joint sensitivity and resolving power of nonlinear handheld detection can be maximized by optimizing the frequency of the excitation field, which is strongly influenced by Brownian and Néel relaxation. The characteristic frequency of magnetic nanoparticles that defines sensitivity and resolving power is usually assessed by AC susceptometry. In this study, we used SPaQ data to predict handheld detection performance for magnetic nanoparticles with various particle sizes. SPaQ assesses dynamics by measuring the derivative of the magnetization originating from magnetic nanoparticles activated by an alternating excitation field. The ratio between the maximum signal difference and full-width-at-half-maximumis used to estimate the optimal excitation frequency. Thereupon, it was shown that a particle with a combination of Brownian and Néel relaxation is superior in nonlinear handheld detection compared to Brownian or Néel only particles. Moreover, the optimal excitation frequency is generally established at a slightly higher frequency compared to the characteristic frequency assessed by AC susceptometry. Consequently, this insight into the consequences of the dynamic behavior of magnetic nanoparticles under an alternating magnetic field enables the optimization of nonlinear handheld detection for specific clinical applications.
KW - NLA
U2 - 10.1166/jbn.2022.3406
DO - 10.1166/jbn.2022.3406
M3 - Article
SN - 1550-7033
VL - 18
SP - 1994
EP - 2000
JO - Journal of biomedical nanotechnology
JF - Journal of biomedical nanotechnology
IS - 8
ER -