Abstract
Ultrathin films of magnetite Fe3O4 have been grown epitaxially on wurtzite wide bandgap semiconductor GaN0001 surfaces using molecular-beam epitaxy. Reflection high-energy electron-diffraction patterns show a 111 orientation of the Fe3O4 films and in-plane epitaxial relationship of 11¯0Fe3O4 112¯0GaN and 112¯Fe3O4 11¯00GaN with the GaN0001. X-ray photoelectron spectroscopy and x-ray magnetic circular dichroism confirm the growth of stoichiometric Fe3O4, instead of -Fe2O3. The magnetic hysteresis loops and saturation magnetization Ms obtained by superconducting quantum interference device at room temperature show fast saturation of the Fe3O4 films with the magnetization close to that of the bulk single-crystal value. In-plane magnetoresistance MR measurements reveal negligibly small MR effects, further indicating that the films are free from antiphase boundaries.
Original language | English |
---|---|
Pages (from-to) | 035419 |
Number of pages | 5 |
Journal | Physical review B: Condensed matter and materials physics |
Volume | 81 |
Issue number | 3 |
DOIs | |
Publication status | Published - 20 Jan 2010 |
Keywords
- EWI-19586
- IR-75999
- METIS-279135