TY - JOUR
T1 - Unusual structural rearrangement and superconductivity in infinite layer cuprate superlattices
AU - Samal, D.
AU - Gauquelin, Nicolas
AU - Takamura, Yayoi
AU - Lobato, Ivan
AU - Arenholz, Elke
AU - Van Aert, Sandra
AU - Huijben, Mark
AU - Zhong, Zhicheng
AU - Verbeeck, Jo
AU - Van Tendeloo, Gustaaf
AU - Koster, Gertjan
N1 - Publisher Copyright:
© 2023 American Physical Society.
PY - 2023/5/30
Y1 - 2023/5/30
N2 - Epitaxial stabilization of thermodynamically metastable phases and advances in atomic control of complex oxide thin-film growth can be used effectively for realizing novel phenomena and as an alternative for bulk synthesis under extreme thermodynamic conditions. Here, we investigate infinite layer (IL) based cuprate superlattices, where 7-8 unit cells of Sr0.6Ca0.4CuO2 (SCCO) are sandwiched between ultrathin spacer layers of SrTiO3 (STO), SrRuO3, or BaCuO2 (BCO) and only observe superconductivity in the pure [SCCO/BCO] superlattice (SL) without spacer layers. Apparently, the insertion of an additional STO spacer layer in the latter SL prevents the occurrence of superconductivity. The observed superconductivity in [SCCO/BCO] SL is discussed in terms of a structural model involving the interplay between the CuO2 plane and the CuO chain similar to the bulk YBa2Cu3O7 superconductor. The structural origin was found by the identification of a metastable IL-BaCuO2 variant, which deviates highly from its parent bulk crystal structure and exhibits a relatively larger out-of-plane lattice parameter (around 7Å) when sandwiched with SCCO in the form of [SCCO/BCO] SL. However, this variant is absent when STO spacer layers are introduced between SCCO and BCO layers. X-ray absorption spectra of the Cu L edge for BCO exhibits a slightly higher energy satellite peak as compared to the 3d9L Zhang-Rice character observed in SCCO. This result indicates the existence of contrasting plane and chain-type Cu-O blocks in SCCO and BCO, respectively, which is further corroborated using annular bright field scanning transmission electron microscopy imaging. This work unravels an unexpected structure of BCO which helps in realizing superconductivity in [SCCO/BCO] SL and provides a wider perspective in the growth and design of cuprate-based hybrid structures.
AB - Epitaxial stabilization of thermodynamically metastable phases and advances in atomic control of complex oxide thin-film growth can be used effectively for realizing novel phenomena and as an alternative for bulk synthesis under extreme thermodynamic conditions. Here, we investigate infinite layer (IL) based cuprate superlattices, where 7-8 unit cells of Sr0.6Ca0.4CuO2 (SCCO) are sandwiched between ultrathin spacer layers of SrTiO3 (STO), SrRuO3, or BaCuO2 (BCO) and only observe superconductivity in the pure [SCCO/BCO] superlattice (SL) without spacer layers. Apparently, the insertion of an additional STO spacer layer in the latter SL prevents the occurrence of superconductivity. The observed superconductivity in [SCCO/BCO] SL is discussed in terms of a structural model involving the interplay between the CuO2 plane and the CuO chain similar to the bulk YBa2Cu3O7 superconductor. The structural origin was found by the identification of a metastable IL-BaCuO2 variant, which deviates highly from its parent bulk crystal structure and exhibits a relatively larger out-of-plane lattice parameter (around 7Å) when sandwiched with SCCO in the form of [SCCO/BCO] SL. However, this variant is absent when STO spacer layers are introduced between SCCO and BCO layers. X-ray absorption spectra of the Cu L edge for BCO exhibits a slightly higher energy satellite peak as compared to the 3d9L Zhang-Rice character observed in SCCO. This result indicates the existence of contrasting plane and chain-type Cu-O blocks in SCCO and BCO, respectively, which is further corroborated using annular bright field scanning transmission electron microscopy imaging. This work unravels an unexpected structure of BCO which helps in realizing superconductivity in [SCCO/BCO] SL and provides a wider perspective in the growth and design of cuprate-based hybrid structures.
UR - http://www.scopus.com/inward/record.url?scp=85161339043&partnerID=8YFLogxK
U2 - 10.1103/PhysRevMaterials.7.054803
DO - 10.1103/PhysRevMaterials.7.054803
M3 - Article
AN - SCOPUS:85161339043
SN - 2475-9953
VL - 7
JO - Physical Review Materials
JF - Physical Review Materials
IS - 5
M1 - 054803
ER -