Upscaling models, downscaling data or the right model for the right scale of application? : abstract

A.H. Sparks, A.D. Nelson, K.A. Garrett, Chris Gilligan, Keith Pembleton

Research output: Contribution to conferenceAbstractOther research output

Abstract

Plant epidemiological models are used in a range of applications, from detailed simulation models that closely follow pathogen infection and dispersal, to generic template-based models for rapid assessment of invasive species. There is increasing interest in applying small scale models - e.g., based on tissue, organ or whole plants - using remotely collected daily data, to generate regional risk information (e.g., maps). The assumption made is that such small scale models “scale-up” appropriately to regional, continental or even global scale. However, these models are often constructed using locally collected, hourly data. By necessity data available are often at much coarser scale, both temporally and spatially, than the data used to develop the model. Computational requirements increase considerably when more detailed models that require fine resolution data (if available) are applied to large areas, while small scale models often add little useful information at these scales and may lead to error propagation. Ideally, detailed models should be used at small temporal and spatial scales and less detailed models used for larger temporal and spatial scales. This paper presents examples of different approaches for changing scales - including upscaling models, downscaling data, and developing new models - and the issues that these approaches create or solve, along with ideas about how we can ensure that the scale of model and data match the desired application.
Original languageEnglish
Publication statusPublished - 2018
EventInternational Congress of Plant Pathology (2018): Plant Health in A Global Economy - Hynes Convention Center, Boston, United States
Duration: 29 Jul 20183 Aug 2018
https://apsnet.confex.com/apsnet/ICPP2018/meetingapp.cgi/Paper/3772

Conference

ConferenceInternational Congress of Plant Pathology (2018)
Abbreviated titleICPP
CountryUnited States
CityBoston
Period29/07/183/08/18
Internet address

Fingerprint

upscaling
downscaling
invasive species

Keywords

  • ITC-GOLD

Cite this

Sparks, A. H., Nelson, A. D., Garrett, K. A., Gilligan, C., & Pembleton, K. (2018). Upscaling models, downscaling data or the right model for the right scale of application? : abstract. Abstract from International Congress of Plant Pathology (2018), Boston, United States.
Sparks, A.H. ; Nelson, A.D. ; Garrett, K.A. ; Gilligan, Chris ; Pembleton, Keith. / Upscaling models, downscaling data or the right model for the right scale of application? : abstract. Abstract from International Congress of Plant Pathology (2018), Boston, United States.
@conference{a6ac764d90614189a912bb71b4e46e41,
title = "Upscaling models, downscaling data or the right model for the right scale of application? : abstract",
abstract = "Plant epidemiological models are used in a range of applications, from detailed simulation models that closely follow pathogen infection and dispersal, to generic template-based models for rapid assessment of invasive species. There is increasing interest in applying small scale models - e.g., based on tissue, organ or whole plants - using remotely collected daily data, to generate regional risk information (e.g., maps). The assumption made is that such small scale models “scale-up” appropriately to regional, continental or even global scale. However, these models are often constructed using locally collected, hourly data. By necessity data available are often at much coarser scale, both temporally and spatially, than the data used to develop the model. Computational requirements increase considerably when more detailed models that require fine resolution data (if available) are applied to large areas, while small scale models often add little useful information at these scales and may lead to error propagation. Ideally, detailed models should be used at small temporal and spatial scales and less detailed models used for larger temporal and spatial scales. This paper presents examples of different approaches for changing scales - including upscaling models, downscaling data, and developing new models - and the issues that these approaches create or solve, along with ideas about how we can ensure that the scale of model and data match the desired application.",
keywords = "ITC-GOLD",
author = "A.H. Sparks and A.D. Nelson and K.A. Garrett and Chris Gilligan and Keith Pembleton",
year = "2018",
language = "English",
note = "International Congress of Plant Pathology (2018) : Plant Health in A Global Economy, ICPP ; Conference date: 29-07-2018 Through 03-08-2018",
url = "https://apsnet.confex.com/apsnet/ICPP2018/meetingapp.cgi/Paper/3772",

}

Sparks, AH, Nelson, AD, Garrett, KA, Gilligan, C & Pembleton, K 2018, 'Upscaling models, downscaling data or the right model for the right scale of application? : abstract' International Congress of Plant Pathology (2018), Boston, United States, 29/07/18 - 3/08/18, .

Upscaling models, downscaling data or the right model for the right scale of application? : abstract. / Sparks, A.H.; Nelson, A.D.; Garrett, K.A.; Gilligan, Chris; Pembleton, Keith.

2018. Abstract from International Congress of Plant Pathology (2018), Boston, United States.

Research output: Contribution to conferenceAbstractOther research output

TY - CONF

T1 - Upscaling models, downscaling data or the right model for the right scale of application? : abstract

AU - Sparks, A.H.

AU - Nelson, A.D.

AU - Garrett, K.A.

AU - Gilligan, Chris

AU - Pembleton, Keith

PY - 2018

Y1 - 2018

N2 - Plant epidemiological models are used in a range of applications, from detailed simulation models that closely follow pathogen infection and dispersal, to generic template-based models for rapid assessment of invasive species. There is increasing interest in applying small scale models - e.g., based on tissue, organ or whole plants - using remotely collected daily data, to generate regional risk information (e.g., maps). The assumption made is that such small scale models “scale-up” appropriately to regional, continental or even global scale. However, these models are often constructed using locally collected, hourly data. By necessity data available are often at much coarser scale, both temporally and spatially, than the data used to develop the model. Computational requirements increase considerably when more detailed models that require fine resolution data (if available) are applied to large areas, while small scale models often add little useful information at these scales and may lead to error propagation. Ideally, detailed models should be used at small temporal and spatial scales and less detailed models used for larger temporal and spatial scales. This paper presents examples of different approaches for changing scales - including upscaling models, downscaling data, and developing new models - and the issues that these approaches create or solve, along with ideas about how we can ensure that the scale of model and data match the desired application.

AB - Plant epidemiological models are used in a range of applications, from detailed simulation models that closely follow pathogen infection and dispersal, to generic template-based models for rapid assessment of invasive species. There is increasing interest in applying small scale models - e.g., based on tissue, organ or whole plants - using remotely collected daily data, to generate regional risk information (e.g., maps). The assumption made is that such small scale models “scale-up” appropriately to regional, continental or even global scale. However, these models are often constructed using locally collected, hourly data. By necessity data available are often at much coarser scale, both temporally and spatially, than the data used to develop the model. Computational requirements increase considerably when more detailed models that require fine resolution data (if available) are applied to large areas, while small scale models often add little useful information at these scales and may lead to error propagation. Ideally, detailed models should be used at small temporal and spatial scales and less detailed models used for larger temporal and spatial scales. This paper presents examples of different approaches for changing scales - including upscaling models, downscaling data, and developing new models - and the issues that these approaches create or solve, along with ideas about how we can ensure that the scale of model and data match the desired application.

KW - ITC-GOLD

UR - https://ezproxy2.utwente.nl/login?url=https://webapps.itc.utwente.nl/library/2018/pres/nelson_ups_abs.pdf

M3 - Abstract

ER -

Sparks AH, Nelson AD, Garrett KA, Gilligan C, Pembleton K. Upscaling models, downscaling data or the right model for the right scale of application? : abstract. 2018. Abstract from International Congress of Plant Pathology (2018), Boston, United States.