Upscaling of high-throughput material platforms in two and three dimensions

Gustavo A. Higuera, Roman K. Truckenmüller, Rong Zhang, Salvatore Pernagallo, Fabien Guillemot, Lorenzo Moroni

Research output: Chapter in Book/Report/Conference proceedingChapterAcademic

1 Citation (Scopus)

Abstract

Scope: High-throughput screening (HTS) is carried out on two- (2D) and three-dimensional (3D) materials, with hundreds to thousands of conditions at various size scales. When hits are successfully found in HTS systems, upscaling to clinically relevant surfaces needs to be performed to validate whether the identified material and functionality can be replicated on the macroscale. In doing so, parameters such as surface chemistry, topography and sample dispensing must be controlled to maintain reproducibility. Here, we discuss the methods harnessed to replicate chemical and topographical features from the nano- to the macroscale in 2D and 3D systems. Technologies to control cell adhesion and 3D scaffold fabrication are introduced and discussed in terms of their potential for HTS.

Basic upscaling principles: HTS is a highly automated process that tests small amounts of large numbers of compounds for a desired function. In the previous chapters of this book, the general principles behind material chemistry and resulting physico-chemical properties, combinatorial chemistry, microfabrication technologies and development of tools to perform biological assays on HTS platforms have been described. These elements partly return here, where basic principles of polymer chemistry and surface topographies are introduced in the context of facing the technological challenges to upscale selected candidates to larger surfaces or medical devices with complex curved shapes. In addition, the basic principles behind implant fabrication technologies and precise cell deposition are discussed to illustrate the steps required to assimilate HTS into clinically relevant 3D systems.
Original languageEnglish
Title of host publicationMateriomics
Subtitle of host publicationHigh-Throughput Screening of Biomaterial Properties
EditorsJan de Boer, Clemens A. van Blitterswijk
Place of PublicationCambridge, UK
PublisherCambridge University Press
Chapter8
Pages133-154
ISBN (Electronic)9781139061414
ISBN (Print)9781107016774
DOIs
Publication statusPublished - 2013

Fingerprint

Dive into the research topics of 'Upscaling of high-throughput material platforms in two and three dimensions'. Together they form a unique fingerprint.

Cite this