TY - JOUR
T1 - Using different combinations of body-mounted IMU sensors to estimate speed of horses
T2 - A machine learning approach
AU - Darbandi, Hamed
AU - Bragança, Filipe Serra
AU - van der Zwaag, Berend Jan
AU - Voskamp, John
AU - Gmel, Annik Imogen
AU - Haraldsdóttir, Eyrún Halla
AU - Havinga, Paul
PY - 2021/2/1
Y1 - 2021/2/1
N2 - Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.
AB - Speed is an essential parameter in biomechanical analysis and general locomotion research. It is possible to estimate the speed using global positioning systems (GPS) or inertial measurement units (IMUs). However, GPS requires a consistent signal connection to satellites, and errors accumulate during IMU signals integration. In an attempt to overcome these issues, we have investigated the possibility of estimating the horse speed by developing machine learning (ML) models using the signals from seven body-mounted IMUs. Since motion patterns extracted from IMU signals are different between breeds and gaits, we trained the models based on data from 40 Icelandic and Franches-Montagnes horses during walk, trot, tölt, pace, and canter. In addition, we studied the estimation accuracy between IMU locations on the body (sacrum, withers, head, and limbs). The models were evaluated per gait and were compared between ML algorithms and IMU location. The model yielded the highest estimation accuracy of speed (RMSE = 0.25 m/s) within equine and most of human speed estimation literature. In conclusion, highly accurate horse speed estimation models, independent of IMU(s) location on-body and gait, were developed using ML.
KW - Breed
KW - Feature extraction
KW - Gait
KW - Inertial measurement unit
KW - Machine learning
UR - http://www.scopus.com/inward/record.url?scp=85099875721&partnerID=8YFLogxK
U2 - 10.3390/s21030798
DO - 10.3390/s21030798
M3 - Article
C2 - 33530288
AN - SCOPUS:85099875721
SN - 1424-8220
VL - 21
JO - Sensors (Switzerland)
JF - Sensors (Switzerland)
IS - 3
M1 - 798
ER -