Vibration Isolation by an Actively Compliantly Mounted Sensor Applied to a Coriolis Mass-Flow Meter

Bert van de Ridder, Wouter Hakvoort, Johannes van Dijk, Joost Conrad Lötters, Andries de Boer

    Research output: Contribution to journalArticleAcademicpeer-review

    64 Downloads (Pure)

    Abstract

    In this paper, a vibration isolated design of a Coriolis mass-flow meter (CMFM) is proposed by introducing a compliant connection between the casing and the tube displacement sensors, with the objective to obtain a relative displacement measurement of the fluid conveying tube, dependent on the tube actuation and mass-flow, but independent of external vibrations. The transfer from external vibrations to the relative displacement measurement is analyzed and the design is optimized to minimize this transfer. The influence of external vibrations on a compliant sensor element and the tube are made equal by tuning the resonance frequency and damping of the compliant sensor element and therefore the influence on the relative displacement measurement is minimized. The optimal tuning of the parameters is done actively by acceleration feedback. Based on simulation results, a prototype is built and validated. The validated design shows more than 24 dB reduction of the influence of external vibrations on the mass-flow measurement value of a CMFM, without affecting the sensitivity for mass-flow.
    Original languageEnglish
    Article number031005031005
    Pages (from-to)1-8
    Number of pages8
    JournalJournal of dynamic systems, measurement and control : transactions of the ASME
    Volume138
    Issue number3
    Early online date12 Jan 2016
    DOIs
    Publication statusPublished - Mar 2016

    Keywords

    • 2020 OA procedure

    Fingerprint

    Dive into the research topics of 'Vibration Isolation by an Actively Compliantly Mounted Sensor Applied to a Coriolis Mass-Flow Meter'. Together they form a unique fingerprint.

    Cite this