Abstract
The widely used approach to study the beam propagation in Kerr media is based on the slowly varying envelope approximation (SVEA) which is also known as the paraxial approximation. Within this approximation, the beam evolution is described by the nonlinear Schroedinger (NLS) equation. In this paper, we extend the NLS equation by including higher order terms to study the effects of nonparaxiality on the soliton propagation in inhomogeneous Kerr media. The result is still a one-way wave equation which means that all backreflections are neglected. The accuracy of this approximation exceeds the standard SVEA. By performing several numerical simulations, we show that the NLS equation produces reasonably good predictions for relatively small degrees of nonparaxiality, as expected. However, in the regions where the envelope beam is changing rapidly as in the break up of a multisoliton bound state, the nonparaxiality plays an important role.
Original language | Undefined |
---|---|
Pages (from-to) | 203-219 |
Number of pages | 18 |
Journal | Journal of nonlinear optical physics & materials |
Volume | 14 |
Issue number | 2 |
DOIs | |
Publication status | Published - 2005 |
Keywords
- inhomogeneous Kerr medium
- multisoliton bound state (higher-order soliton)
- IR-53375
- EWI-13939
- Nonparaxiality
- METIS-226022