TY - JOUR
T1 - When Machine Learning Meets 2D Materials
T2 - A Review
AU - Lu, Bin
AU - Xia, Yuze
AU - Ren, Yuqian
AU - Xie, Miaomiao
AU - Zhou, Liguo
AU - Vinai, Giovanni
AU - Morton, Simon A.
AU - Wee, Andrew T.S.
AU - van der Wiel, Wilfred G.
AU - Zhang, Wen
AU - Wong, Ping Kwan Johnny
N1 - Publisher Copyright:
© 2024 The Authors. Advanced Science published by Wiley-VCH GmbH.
PY - 2024/4/3
Y1 - 2024/4/3
N2 - The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper – yet more efficient – alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.
AB - The availability of an ever-expanding portfolio of 2D materials with rich internal degrees of freedom (spin, excitonic, valley, sublattice, and layer pseudospin) together with the unique ability to tailor heterostructures made layer by layer in a precisely chosen stacking sequence and relative crystallographic alignments, offers an unprecedented platform for realizing materials by design. However, the breadth of multi-dimensional parameter space and massive data sets involved is emblematic of complex, resource-intensive experimentation, which not only challenges the current state of the art but also renders exhaustive sampling untenable. To this end, machine learning, a very powerful data-driven approach and subset of artificial intelligence, is a potential game-changer, enabling a cheaper – yet more efficient – alternative to traditional computational strategies. It is also a new paradigm for autonomous experimentation for accelerated discovery and machine-assisted design of functional 2D materials and heterostructures. Here, the study reviews the recent progress and challenges of such endeavors, and highlight various emerging opportunities in this frontier research area.
KW - 2D materials
KW - data-driven approach
KW - machine learning
UR - http://www.scopus.com/inward/record.url?scp=85183087510&partnerID=8YFLogxK
U2 - 10.1002/advs.202305277
DO - 10.1002/advs.202305277
M3 - Review article
C2 - 38279508
AN - SCOPUS:85183087510
SN - 2198-3844
VL - 11
JO - Advanced science
JF - Advanced science
IS - 13
M1 - 2305277
ER -