Wind turbine sound propagation: Comparison of a linearized Euler equations model with parabolic equation methods

J. Colas, A. Emmanuelli, D. Dragna, Philippe Blanc-Benon, B. Cotté, R.J.A.M. Stevens

Research output: Contribution to journalArticleAcademicpeer-review

4 Citations (Scopus)
53 Downloads (Pure)

Abstract

Noise generated by wind turbines is significantly impacted by its propagation in the atmosphere. Hence, for annoyance issues, an accurate prediction of sound propagation is critical to determine noise levels around wind turbines. This study presents a method to predict wind turbine sound propagation based on linearized Euler equations. We compare this approach to the parabolic equation method, which is widely used since it captures the influence of atmospheric refraction, ground reflection, and sound scattering at a low computational cost. Using the linearized Euler equations is more computationally demanding but can reproduce more physical effects as fewer assumptions are made. An additional benefit of the linearized Euler equations is that they provide a time-domain solution. To compare both approaches, we simulate sound propagation in two distinct scenarios. In the first scenario, a wind turbine is situated on flat terrain; in the second, a turbine is situated on a hilltop. The results show that both methods provide similar noise predictions in the two scenarios. We find that while some differences in the propagation results are observed in the second case, the final predictions for a broadband extended source are similar between the two methods.
Original languageEnglish
Pages (from-to)1413-1426
Number of pages14
JournalThe Journal of the Acoustical Society of America
Volume154
Issue number3
DOIs
Publication statusPublished - 6 Sept 2023

Keywords

  • 2024 OA procedure

Fingerprint

Dive into the research topics of 'Wind turbine sound propagation: Comparison of a linearized Euler equations model with parabolic equation methods'. Together they form a unique fingerprint.

Cite this