Abstract
This paper introduces a novel boundary integral equation (BIE) method for the numerical solution of problems of planewave scattering by periodic line arrays of two-dimensional penetrable obstacles. Our approach is built upon a direct BIE formulation that leverages the simplicity of the free-space Green function but in turn entails evaluation of integrals over the unit-cell boundaries. Such integrals are here treated via the window Green function method. The windowing approximation together with a finite-rank operator correction—used to properly impose the Rayleigh radiation condition—yield a robust second-kind BIE that produces superalgebraically convergent solutions throughout the spectrum, including at the challenging Rayleigh–Wood anomalies. The corrected windowed BIE can be discretized by means of off-the-shelf Nyström and boundary element methods, and it leads to linear systems suitable for iterative linear algebra solvers as well as standard fast matrix–vector product algorithms. A variety of numerical examples demonstrate the accuracy and robustness of the proposed methodology.
Original language | English |
---|---|
Article number | 12540 |
Number of pages | 39 |
Journal | Studies in Applied Mathematics |
Early online date | 5 Nov 2022 |
DOIs | |
Publication status | E-pub ahead of print/First online - 5 Nov 2022 |
Keywords
- UT-Hybrid-D