Young inequality for surface convolutions in $\mathbf{R}^{3}$

    Research output: Book/ReportReportProfessional

    32 Downloads (Pure)

    Abstract

    We prove a Young inequality for convolutions defined on a Lipschitz continuous surface in $\mathbf{R}^{3}$.
    Original languageUndefined
    Place of PublicationEnschede
    PublisherNumerical Analysis and Computational Mechanics (NACM)
    Number of pages7
    ISBN (Print)0169-2690
    Publication statusPublished - 2004

    Publication series

    NameMemoranda
    PublisherDepartment of Applied Mathematics, University of Twente
    No.1735
    ISSN (Print)0169-2690

    Keywords

    • METIS-220064
    • EWI-3555
    • MSC-26D10
    • IR-65919

    Cite this

    Izsak, F., & van der Vegt, J. J. W. (2004). Young inequality for surface convolutions in $\mathbf{R}^{3}$. (Memoranda; No. 1735). Enschede: Numerical Analysis and Computational Mechanics (NACM).